Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.225
Filter
1.
J Med Chem ; 67(7): 5437-5457, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38564512

ABSTRACT

The mitogen-activated protein kinase-interacting protein kinases (MNKs) are the only kinases known to phosphorylate eukaryotic translation initiation factor 4E (eIF4E) at Ser209, which plays a significant role in cap-dependent translation. Dysregulation of the MNK/eIF4E axis has been found in various solid tumors and hematological malignancies, including diffuse large B-cell lymphoma (DLBCL). Herein, structure-activity relationship studies and docking models determined that 20j exhibits excellent MNK1/2 inhibitory activity, stability, and hERG safety. 20j exhibits strong and broad antiproliferative activity against different cancer cell lines, especially GCB-DLBCL DOHH2. 20j suppresses the phosphorylation of eIF4E in Hela cells (IC50 = 90.5 nM) and downregulates the phosphorylation of eIF4E and 4E-BP1 in A549 cells. In vivo studies first revealed that ibrutinib enhances the antitumor effect of 20j without side effects in a DOHH2 xenograft model. This study provided a solid foundation for the future development of a MNK inhibitor for GCB-DLBCL treatment.


Subject(s)
Lymphoma , Protein Serine-Threonine Kinases , Humans , Eukaryotic Initiation Factor-4E/metabolism , HeLa Cells , Phosphorylation , Lymphoma/drug therapy
2.
J Med Virol ; 96(4): e29555, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38546037

ABSTRACT

In this study, we demonstrated the antiviral efficacy of hesperetin against multiple poxviruses, including buffalopox virus (BPXV), vaccinia virus (VACV), and lumpy skin disease virus (LSDV). The time-of-addition and virus step-specific assays indicated that hesperetin reduces the levels of viral DNA, mRNA, and proteins in the target cells. Further, by immunoprecipitation (IP) of the viral RNA from BPXV-infected Vero cells and a cell-free RNA-IP assay, we demonstrated that hesperetin-induced reduction in BPXV protein synthesis is also consistent with diminished interaction between eukaryotic translation initiation factor eIF4E and the 5' cap of viral mRNA. Molecular docking and MD simulation studies were also consistent with the binding of hesperetin to the cap-binding pocket of eIF4E, adopting a conformation similar to m7GTP binding. Furthermore, in a BPXV egg infection model, hesperetin was shown to suppress the development of pock lesions on the chorioallantoic membrane and associated mortality in the chicken embryos. Most importantly, long-term culture of BPXV in the presence of hesperetin did not induce the generation of drug-resistant viral mutants. In conclusion, we, for the first time, demonstrated the antiviral activity of hesperetin against multiple poxviruses, besides providing some insights into its potential mechanisms of action.


Subject(s)
Eukaryotic Initiation Factor-4E , Hesperidin , Vaccinia virus , Animals , Cattle , Chlorocebus aethiops , Chick Embryo , Vero Cells , Molecular Docking Simulation , Vaccinia virus/genetics , Antiviral Agents/pharmacology , RNA, Messenger , Virus Replication
3.
Phys Chem Chem Phys ; 26(14): 10660-10672, 2024 Apr 03.
Article in English | MEDLINE | ID: mdl-38511550

ABSTRACT

The cap-dependent mRNA translation is dysregulated in many kinds of cancers. The interaction between eIF4E and eIF4G through a canonical eIF4E-binding motif (CEBM) determines the efficacy of the cap-dependent mRNA translation. eIF4E-binding proteins (4E-BPs) share the CEBM and compete with eIF4G for the same binding surface of eIF4E and then inhibit the mRNA translation. 4E-BPs function as tumor repressors in nature. Hyperphosphorylation of 4E-BPs regulates the structure folding and causes the dissociation of 4E-BPs from eIF4E. However, until now, there has been no structure of the full-length 4E-BPs in complex with eIF4E. The regulation mechanism of phosphorylation is still unclear. In this work, we first investigate the interactions of human eIF4E with the CEBM and an auxiliary eIF4E-binding motif (AEBM) in eIF4G and 4E-BPs. The results unravel that the structure and interactions of the CEBM are highly conserved between eIF4G and 4E-BPs. However, the extended CEBM (ECEBM) in 4E-BPs forms a longer helix than that in eIF4G. The residue R62 in the ECEBM of 4E-BP2 forms salt bridges with E32 and E70 of eIF4E. The residue R63 of 4E-BP2 forms two special hydrogen bonds with N77 of eIF4E. Both of these interactions are missing in eIF4G. The AEBM of 4E-BPs folds into a ß-sheet conformation, which protects V81 inside a hydrophobic core in 4E-BP2. In eIF4G, the AEBM exists in a random coil state. The hydrophilic residues S637 and D638 of eIF4G open the hydrophobic core for solvents. The results show that the ECEBM and AEBM may be responsible for the competing advantage of 4E-BP2. Finally, based on our previous work (J. Zeng, F. Jiang and Y. D. Wu, J. Chem. Theory Comput., 2017, 13, 320), the human eIF4E:4E-BP2 complex (eIF4E:BP2P18-I88) including all reported phosphorylation sites is predicted. The eIF4E:BP2P18-I88 complex is different from the existing experimental eIF4E:eIF4G complex and provides an important structure for further studying the regulation mechanism of phosphorylation in 4E-BPs.


Subject(s)
Eukaryotic Initiation Factor-4E , Eukaryotic Initiation Factor-4G , Humans , Carrier Proteins/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Eukaryotic Initiation Factor-4G/chemistry , Eukaryotic Initiation Factor-4G/genetics , Eukaryotic Initiation Factor-4G/metabolism , Protein Binding , Protein Biosynthesis
4.
Sci Rep ; 14(1): 4237, 2024 02 20.
Article in English | MEDLINE | ID: mdl-38378793

ABSTRACT

Eukaryotic initiation factor 4E (eIF4E) is a pivotal protein involved in the regulatory mechanism for global protein synthesis in both physiological and pathological conditions. MicroRNAs (miRNAs) play a significant role in regulating gene expression by targeting mRNA. However, the ability of miRNAs to regulate eIF4E and its phosphorylation remains relatively unknown. In this study, we predicted and experimentally verified targets for miR-483-5p, including eukaryotic translation initiation factor eIF4E and its binding proteins, 4E-BPs, that regulate protein synthesis. Using the Web of Science database, we identified 28 experimentally verified miR-483-5p targets, and by the TargetScan database, we found 1818 predicted mRNA targets, including EIF4E, EIF4EBP1, and EIF4EBP2. We verified that miR-483-5p significantly reduced ERK1 and MKNK1 mRNA levels in HEK293 cells. Furthermore, we discovered that miR-483-5p suppressed EIF4EBP1 and EIF4EBP2, but not EIF4E. Finally, we found that miR-483-5p reduced the level of phosphorylated eIF4E (pSer209eIF4E) but not total eIF4E. In conclusion, our study suggests that miR-483-5p's multi-targeting effect on the ERK1/ MKNK1 axis modulates the phosphorylation state of eIF4E. Unlike siRNA, miRNA can have multiple targets in the pathway, and thereby exploring the role of miR-483-5p in various cancer models may uncover therapeutic options.


Subject(s)
Eukaryotic Initiation Factor-4E , MicroRNAs , Humans , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , HEK293 Cells , Intracellular Signaling Peptides and Proteins/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Phosphoproteins/genetics , Phosphoproteins/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism
5.
J Virol ; 98(2): e0194823, 2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38299843

ABSTRACT

The eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation on serine 209. In a recent study, by two rounds of TMT relative quantitative proteomics, we found that phosphorylated eIF4E (p-eIF4E) favors the translation of selected mRNAs, and the encoded proteins are mainly involved in ECM-receptor, focal adhesion, and PI3K-Akt signaling. The current paper is focused on the relationship between p-eIF4E and the downstream host cell proteins, and their presumed effect on efficient entry of PEDV. We found that the depletion of membrane-residential factor TSPAN3, CD63, and ITGB2 significantly inhibited viral invasion of PEDV, and reduced the entry of pseudotyped particles PEDV-pp, SARS-CoV-pp, and SARS-CoV-2-pp. The specific antibodies of TSPAN3, CD63, and ITGB2 blocked the adsorption of PEDV into host cells. Moreover, we detected that eIF4E phosphorylation was increased at 1 h after PEDV infection, in accordance with the expression of TSPAN3, CD63, and ITGB2. Similar trends appeared in the intestines of piglets in the early stage of PEDV challenge. Compared with Vero cells, S209A-Vero cells in which eIF4E cannot be phosphorylated showed a decrease of invading PEDV virions. MNK kinase inhibitor blocked PEDV invasion, as well as reduced the accumulation of TSPAN3, CD63, and ITGB2. Further study showed that the ERK-MNK pathway was responsible for the regulation of PEDV-induced early phosphorylation of eIF4E. This paper demonstrates for the first time the connections among p-eIF4E stimulation and membrane-residential host factors. Our findings also enrich the understanding of the biological function of phosphorylated eIF4E during the viral life cycle.IMPORTANCEThe eukaryotic translation initiation factor eIF4E can regulate cellular translation via phosphorylation. In our previous study, several host factors susceptible to a high level of p-eIF4E were found to be conducive to viral infection by coronavirus PEDV. The current paper is focused on cell membrane-residential factors, which are involved in signal pathways that are sensitive to phosphorylated eIF4E. We found that the ERK-MNK pathway was activated, which resulted in the stimulation of phosphorylation of eIF4E in early PEDV infection. Phospho-eIF4E promoted the viral invasion of PEDV by upregulating the expression of host factors TSPAN3, CD63, and ITGB2 at the translation level rather than at the transcription level. Moreover, TSPAN3, CD63, or ITGB2 facilitates the efficient entry of coronavirus SARS-CoV, SARS-CoV-2, and HCoV-OC43. Our findings broaden our insights into the dynamic phosphorylation of eIF4E during the viral life cycle, and provide further evidence that phosphorylated eIF4E regulates selective translation of host mRNA.


Subject(s)
Cell Membrane , Eukaryotic Initiation Factor-4E , Porcine epidemic diarrhea virus , Protein Biosynthesis , Virus Internalization , Animals , Cell Membrane/chemistry , Cell Membrane/genetics , Cell Membrane/metabolism , Cell Membrane/virology , Chlorocebus aethiops , Eukaryotic Initiation Factor-4E/chemistry , Eukaryotic Initiation Factor-4E/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Integrin beta Chains/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Porcine epidemic diarrhea virus/physiology , Protein Serine-Threonine Kinases/antagonists & inhibitors , Proteomics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Swine , Tetraspanins/metabolism , Vero Cells
6.
J Med Chem ; 67(4): 3167-3189, 2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38315032

ABSTRACT

Mitogen-activated protein kinase-interacting protein kinases (MNKs) and phosphorylate eukaryotic initiation factor 4E (p-eIF4E) play a critical role in regulating mRNA translation and protein synthesis associated with the development of cancer, metabolism, and inflammation. This study undertakes the modification of a 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)pyridine structure, leading to the discovery of 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)-1H-pyrrolo[2,3-b]pyridine (D25) as a potent and selective MNK inhibitor. D25 demonstrated inhibitory activity, with IC50 values of 120.6 nM for MNK1 and 134.7 nM for MNK2, showing exceptional selectivity. D25 inhibited the expression of pro-inflammation cytokines in RAW264.7 cells, such as inducible NO synthase, cyclooxygenase-2, and interleukin-6 (IL-6). In the lipopolysaccharide-induced sepsis mouse model, D25 significantly reduced p-eIF4E in spleen tissue and decreased the expression of tumor necrosis factor α, interleukin-1ß, and IL-6, and it also reduced the production of reactive oxygen species, resulting in improved organ injury caused by inflammation. This suggests that D25 may provide a potential treatment for sepsis and sepsis-associated acute spleen injury.


Subject(s)
Protein Serine-Threonine Kinases , Sepsis , Animals , Mice , Intracellular Signaling Peptides and Proteins/metabolism , Eukaryotic Initiation Factor-4E/chemistry , Spleen , Interleukin-6/metabolism , Mitogen-Activated Protein Kinase Kinases/metabolism , Inflammation/drug therapy , Inflammation/metabolism , Sepsis/drug therapy , Pyridines/metabolism , Phosphorylation
7.
Sci Rep ; 14(1): 2082, 2024 01 24.
Article in English | MEDLINE | ID: mdl-38267514

ABSTRACT

The recent scarcity of fishmeal and other resources means that studies on the intrinsic mechanisms of nutrients in the growth and development of aquatic animals at the molecular level have received widespread attention. The target of rapamycin (TOR) pathway has been reported to receive signals from nutrients and environmental stresses, and regulates cellular anabolism and catabolism to achieve precise regulation of cell growth and physiological activities. In this study, we cloned and characterized the full-length cDNA sequence of the TOR gene of Macrobrachium rosenbergii (MrTOR). MrTOR was expressed in all tissues, with higher expression in heart and muscle tissues. In situ hybridization also indicated that MrTOR was expressed in muscle, mainly around the nucleus. RNA interference decreased the expression levels of MrTOR and downstream protein synthesis-related genes (S6K, eIF4E, and eIF4B) (P < 0.05) and the expression and enzyme activity of the lipid synthesis-related enzyme, fatty acid synthase (FAS), and increased enzyme activity of the lipolysis-related enzyme, lipase (LPS). In addition, amino acid injection significantly increased the transcript levels of MrTOR and downstream related genes (S6K, eIF4E, eIF4B, and FAS), as well as triglyceride and total cholesterol tissue levels and FAS activity. Starvation significantly increased transcript levels and enzyme activities of adenylate-activated protein kinase and LPS and decreased transcript levels and enzyme activities of FAS, as well as transcript levels of MrTOR and its downstream genes (P < 0.05), whereas amino acid injection alleviated the starvation-induced decreases in transcript levels of these genes. These results suggested that arginine and leucine activated the TOR signaling pathway, promoted protein and lipid syntheses, and alleviated the pathway changes induced by starvation.


Subject(s)
Muscle Proteins , Palaemonidae , Animals , Palaemonidae/genetics , Eukaryotic Initiation Factor-4E , Lipopolysaccharides , Fatty Acid Synthases , Adenylate Kinase , Arginine
8.
Sci Rep ; 14(1): 2178, 2024 01 25.
Article in English | MEDLINE | ID: mdl-38272944

ABSTRACT

Recognition of the mRNA 5' end is a critical step needed for translation initiation. This step is performed by the cap binding protein eIF4E, which joins the larger eIF4G subunit to form the eIF4F complex. Trypanosomatids have a minimum of five different eIF4F-like complexes formed through specific but not well-defined interactions between four different eIF4E and five eIF4G homologues. The EIF4E6/EIF4G5 complex has been linked with the stage-specific translation of mRNAs encoding the major Trypanosoma brucei virulence factors. Here, to better define the molecular basis for the TbEIF4E6/TbEIF4G5 interaction, we describe the identification of the peptide interacting with TbEIF4E6 in the region comprising residues 79-166 of TbEIF4G5. The TbEIF4E6-TbEIF4G5_79-116 complex reconstituted with recombinant proteins is highly stable even in the absence of cap-4. The crystal structure of the complex was subsequently solved, revealing extensive interacting surfaces. Comparative analyses highlight the conservation of the overall structural arrangement of different eIF4E/eIF4G complexes. However, highly different interacting surfaces are formed with distinct binding contacts occurring both in the canonical and noncanonical elements within eIF4G and the respective eIF4E counterpart. These specific pairs of complementary interacting surfaces are likely responsible for the selective association needed for the formation of distinct eIF4F complexes in trypanosomatids.


Subject(s)
Eukaryotic Initiation Factor-4F , Trypanosoma brucei brucei , Eukaryotic Initiation Factor-4F/metabolism , Eukaryotic Initiation Factor-4G/metabolism , Eukaryotic Initiation Factor-4E/metabolism , Trypanosoma brucei brucei/genetics , Protein Binding , RNA, Messenger/metabolism
9.
Exp Dermatol ; 33(1): e14997, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38284198

ABSTRACT

Psoriasis is a complex inflammatory skin disease with uncertain pathogenesis. eIF4E (eukaryotic translation initiation factor 4E) and its phosphorylation state p-eIF4E are highly expressed in psoriatic tissues. However, the role eIF4E played in psoriasis is still unclear. To investigate the function of eIF4E and p-eIF4E in psoriasis and to figure out whether eFT-508 (Tomivosertib, eIF4E phosphorylation inhibitor) can relieve the disease severity and become a promising candidate for the psoriasis treatment. We first verified the expression of eIF4E and p-eIF4E in psoriasis patients' lesional skin. Then, we demonstrated the effect of eIF4E and p-eIF4E on the abnormal proliferation and inflammatory state of keratinocytes by using eIF4E-specific small interfering RNA (si-eIF4E) and eFT-508. In this study, all cell experiments were performed under the psoriasis-model condition. Moreover, the external application of eFT-508 on imiquimod (IMQ)-induced psoriasis mice was performed to explore its potential clinical value. Results showed that eIF4E and p-eIF4E were significantly overexpressed in skin lesions of psoriasis patients. Knocking down eIF4E or adding eFT-508 can relieve the abnormal proliferation and the excessive inflammatory state of keratinocytes by reducing the expression of cyclin D1, IL-1ß, CXCL10, IL23, Wnt 5a, NBS1 and p-AKT from mRNA or protein levels. Furthermore, these results were consistent with those obtained from the in vitro experiments. Then, we conclude that eIF4E plays the role of the pathogenic gene in psoriasis, and eFT-508 may be a promising candidate for anti-prosoriasis drugs.


Subject(s)
Eukaryotic Initiation Factor-4E , Psoriasis , Animals , Humans , Mice , Disease Models, Animal , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Imiquimod/adverse effects , Keratinocytes/metabolism , Phosphorylation , Psoriasis/drug therapy , Psoriasis/genetics , Psoriasis/metabolism , Skin/metabolism
10.
Proc Natl Acad Sci U S A ; 121(4): e2313677121, 2024 Jan 23.
Article in English | MEDLINE | ID: mdl-38241435

ABSTRACT

The genomes of several plant viruses contain RNA structures at their 3' ends called cap-independent translation enhancers (CITEs) that bind the host protein factors such as mRNA 5' cap-binding protein eIF4E for promoting cap-independent genome translation. However, the structural basis of such 5' cap-binding protein recognition by the uncapped RNA remains largely unknown. Here, we have determined the crystal structure of a 3' CITE, panicum mosaic virus-like translation enhancer (PTE) from the saguaro cactus virus (SCV), using a Fab crystallization chaperone. The PTE RNA folds into a three-way junction architecture with a pseudoknot between the purine-rich R domain and pyrimidine-rich Y domain, which organizes the overall structure to protrude out a specific guanine nucleotide, G18, from the R domain that comprises a major interaction site for the eIF4E binding. The superimposable crystal structures of the wild-type, G18A, G18C, and G18U mutants suggest that the PTE scaffold is preorganized with the flipped-out G18 ready to dock into the eIF4E 5' cap-binding pocket. The binding studies with wheat and human eIF4Es using gel electrophoresis and isothermal titration calorimetry, and molecular docking computation for the PTE-eIF4E complex demonstrated that the PTE structure essentially mimics the mRNA 5' cap for eIF4E binding. Such 5' cap mimicry by the uncapped and structured viral RNA highlights how viruses can exploit RNA structures to mimic the host protein-binding partners and bypass the canonical mechanisms for their genome translation, providing opportunities for a better understanding of virus-host interactions and non-canonical translation mechanisms found in many pathogenic RNA viruses.


Subject(s)
Cactaceae , Enhancer Elements, Genetic , Plant Viruses , Protein Biosynthesis , Humans , Cactaceae/virology , Eukaryotic Initiation Factor-4E/metabolism , Molecular Docking Simulation , Protein Binding , RNA Caps/metabolism , RNA, Messenger/metabolism , Plant Viruses/genetics
11.
Proc Natl Acad Sci U S A ; 121(5): e2313589121, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38266053

ABSTRACT

The canonical eukaryotic initiation factor 4F (eIF4F) complex, composed of eIF4G1, eIF4A1, and the cap-binding protein eIF4E, plays a crucial role in cap-dependent translation initiation in eukaryotic cells. An alternative cap-independent initiation can occur, involving only eIF4G1 and eIF4A1 through internal ribosome entry sites (IRESs). This mechanism is considered complementary to cap-dependent initiation, particularly in tumors under stress conditions. However, the selection and molecular mechanism of specific translation initiation remains poorly understood in human cancers. Thus, we analyzed gene copy number variations (CNVs) in TCGA tumor samples and found frequent amplification of genes involved in translation initiation. Copy number gains in EIF4G1 and EIF3E frequently co-occur across human cancers. Additionally, EIF4G1 expression strongly correlates with genes from cancer cell survival pathways including cell cycle and lipogenesis, in tumors with EIF4G1 amplification or duplication. Furthermore, we revealed that eIF4G1 and eIF4A1 protein levels strongly co-regulate with ribosomal subunits, eIF2, and eIF3 complexes, while eIF4E co-regulates with 4E-BP1, ubiquitination, and ESCRT proteins. Utilizing Alphafold predictions, we modeled the eIF4F structure with and without eIF4E binding. For cap-dependent initiation, our modeling reveals extensive interactions between the N-terminal eIF4E-binding domain of eIF4G1 and eIF4E. Furthermore, the eIF4G1 HEAT-2 domain positions eIF4E near the eIF4A1 N-terminal domain (NTD), resulting in the collaborative enclosure of the RNA binding cavity within eIF4A1. In contrast, during cap-independent initiation, the HEAT-2 domain directly binds the eIF4A1-NTD, leading to a stronger interaction between eIF4G1 and eIF4A1, thus closing the mRNA binding cavity without the involvement of eIF4E.


Subject(s)
Eukaryotic Initiation Factor-4F , Neoplasms , Humans , Eukaryotic Initiation Factor-4F/genetics , Eukaryotic Initiation Factor-4E/genetics , DNA Copy Number Variations , Eukaryotic Initiation Factor-3 , Neoplasms/genetics
12.
EMBO Rep ; 25(1): 404-427, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38177902

ABSTRACT

Maternal mRNAs are essential for protein synthesis during oogenesis and early embryogenesis. To adapt translation to specific needs during development, maternal mRNAs are translationally repressed by shortening the polyA tails. While mRNA deadenylation is associated with decapping and degradation in somatic cells, maternal mRNAs with short polyA tails are stable. Here we report that the germline-specific eIF4E paralog, eIF4E1b, is essential for zebrafish oogenesis. eIF4E1b localizes to P-bodies in zebrafish embryos and binds to mRNAs with reported short or no polyA tails, including histone mRNAs. Loss of eIF4E1b results in reduced histone mRNA levels in early gonads, consistent with a role in mRNA storage. Using mouse and human eIF4E1Bs (in vitro) and zebrafish eIF4E1b (in vivo), we show that unlike canonical eIF4Es, eIF4E1b does not interact with eIF4G to initiate translation. Instead, eIF4E1b interacts with the translational repressor eIF4ENIF1, which is required for eIF4E1b localization to P-bodies. Our study is consistent with an important role of eIF4E1b in regulating mRNA dormancy and provides new insights into fundamental post-transcriptional regulatory principles governing early vertebrate development.


Subject(s)
RNA, Messenger, Stored , Zebrafish , Animals , Humans , Mice , RNA, Messenger, Stored/genetics , RNA, Messenger, Stored/metabolism , Zebrafish/genetics , Zebrafish/metabolism , Histones/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Protein Biosynthesis
13.
Mol Plant Pathol ; 25(1): e13418, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38279849

ABSTRACT

Eukaryotic translation initiation factor 4E (eIF4E), which plays a pivotal role in initiating translation in eukaryotic organisms, is often hijacked by the viral genome-linked protein to facilitate the infection of potyviruses. In this study, we found that the naturally occurring amino acid substitution D71G in eIF4E is widely present in potyvirus-resistant watermelon accessions and disrupts the interaction between watermelon eIF4E and viral genome-linked protein of papaya ringspot virus-watermelon strain, zucchini yellow mosaic virus or watermelon mosaic virus. Multiple sequence alignment and protein modelling showed that the amino acid residue D71 located in the cap-binding pocket of eIF4E is strictly conserved in many plant species. The mutation D71G in watermelon eIF4E conferred resistance against papaya ringspot virus-watermelon strain and zucchini yellow mosaic virus, and the equivalent mutation D55G in tobacco eIF4E conferred resistance to potato virus Y. Therefore, our finding provides a potential precise target for breeding plants resistant to multiple potyviruses.


Subject(s)
Amino Acids , Potyvirus , Amino Acid Sequence , Amino Acid Substitution/genetics , Amino Acids/metabolism , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Plant Diseases/genetics , Potyvirus/genetics , Potyvirus/metabolism , Citrullus/virology
14.
Anticancer Drugs ; 35(2): 155-162, 2024 02 01.
Article in English | MEDLINE | ID: mdl-37694854

ABSTRACT

Improving the clinical management of nasopharyngeal carcinoma (NPC) is an unmet need owing to the high incidence of treatment failure caused by radioresistance. In our study, we observed increased phosphorylation of translation initiation factor 4E (eIF4E), regulated by MAP kinase-interacting kinase (MNK), in NPC cells following irradiation treatment. Using siRNA to deplete MNK, we found that radiation-induced eIF4E phosphorylation was eliminated, NPC cell sensitivity to radiation was enhanced, and radioresistant NPC cell viability was reduced. Furthermore, we tested three pharmacological MNK inhibitors (eFT508, CGP57380, and cercosporamide) and found that they were effective against radioresistant NPC cells and synergized with irradiation. In-vivo experiments confirmed that eFT508, at a tolerable dose, inhibited the growth of radioresistant NPC and synergized with radiation in a radiosensitive NPC xenograft model. Our research highlights the activation of MNK-mediated survival mechanisms in NPC in response to radiotherapy and the potential of combining radiation with MNK inhibitors as a sensitizing strategy. Notably, eFT508 is currently being investigated in clinical trials for cancer treatment, and our findings may prompt the initiation of clinical trials using eFT508 in radioresistant NPC patients.


Subject(s)
Nasopharyngeal Neoplasms , Protein Serine-Threonine Kinases , Humans , Nasopharyngeal Carcinoma/drug therapy , Nasopharyngeal Carcinoma/radiotherapy , Protein Serine-Threonine Kinases/metabolism , Eukaryotic Initiation Factor-4E , Phosphorylation , Nasopharyngeal Neoplasms/drug therapy , Nasopharyngeal Neoplasms/radiotherapy , Nasopharyngeal Neoplasms/pathology , Cell Line, Tumor
15.
Anticancer Drugs ; 35(3): 219-226, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-37948336

ABSTRACT

After an initial positive response to chemotherapy, cancer patients often become resistant and experience relapse. Our previous research identified eukaryotic translation initiation factor 4E (eIF4E) as a crucial target to overcome chemoresistance. In this study, we delved further into the role and therapeutic potential of myeloid cell leukemia 1 (Mcl-1), an eIF4E-mediated target, in chemoresistance. We showed that the levels of phosphor and total eIF4E, as well as Mcl-1, were elevated in chemoresistant cervical but not colon cancer cells. Mcl-1 inhibitor S64315 decreased Mcl-1 levels in chemoresistant cancer cells, regardless of Mcl-1 upregulation, decreased viability in chemoresistant cancer cells and acted synergistically with chemotherapy drugs. The combined inhibition of Mcl-1 and B-cell lymphoma 2 (Bcl-2), employing both genetic and pharmacological approaches, led to a markedly more substantial decrease in viability compared with the inhibition of either target individually. The combination of S64315 and Bcl-2 inhibitors reduced tumor growth in chemoresistant cervical and colon cancer models without causing general toxicity in mice. This combination also prolonged overall survival compared with using S64315 or venetoclax alone. Our research highlights the therapeutic potential of inhibiting Mcl-1 and Bcl-2 simultaneously in chemoresistant cancers and provides a rationale for initiating clinical trials to investigate the combination of S64315 and venetoclax for the treatment of advanced colon and cervical cancer.


Subject(s)
Colonic Neoplasms , Drug Resistance, Neoplasm , Sulfonamides , Animals , Humans , Mice , Apoptosis , Bridged Bicyclo Compounds, Heterocyclic , Cell Line, Tumor , Colonic Neoplasms/drug therapy , Eukaryotic Initiation Factor-4E , Myeloid Cell Leukemia Sequence 1 Protein/antagonists & inhibitors , Proto-Oncogene Proteins c-bcl-2/antagonists & inhibitors
16.
Adv Biol (Weinh) ; 8(2): e2300494, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37997253

ABSTRACT

The nuanced heterogeneity and specialized functions of translation machinery are increasingly recognized as crucial for precise translational regulation. Here, high-throughput ribosomal profiling (ribo-seq) is used to analyze the specialized roles of eukaryotic initiation factors (eIFs) in the budding yeast. By examining changes in ribosomal distribution across the genome resulting from knockouts of eIF4A, eIF4B, eIF4G1, CAF20, or EAP1, or knockdowns of eIF1, eIF1A, eIF4E, or PAB1, two distinct initiation-factor groups, the "looping" and "scanning" groups are discerned, based on similarities in the ribosomal landscapes their perturbation induced. The study delves into the cis-regulatory sequence features of genes influenced predominantly by each group, revealing that genes more dependent on the looping-group factors generally have shorter transcripts and poly(A) tails. In contrast, genes more dependent on the scanning-group factors often possess upstream open reading frames and exhibit a higher GC content in their 5' untranslated regions. From the ribosomal RNA fragments identified in the ribo-seq data, ribosomal heterogeneity associated with perturbation of specific initiation factors is further identified, suggesting their potential roles in regulating ribosomal components. Collectively, the study illuminates the complexity of translational regulation driven by heterogeneity and specialized functions of translation machinery, presenting potential approaches for targeted gene translation manipulation.


Subject(s)
Ribosome Profiling , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genetics , RNA, Messenger/genetics , Ribosomes/genetics , Eukaryotic Initiation Factor-4E/genetics
17.
Bioessays ; 46(1): e2300145, 2024 01.
Article in English | MEDLINE | ID: mdl-37926700

ABSTRACT

Recent findings position the eukaryotic translation initiation factor eIF4E as a novel modulator of mRNA splicing, a process that impacts the form and function of resultant proteins. eIF4E physically interacts with the spliceosome and with some intron-containing transcripts implying a direct role in some splicing events. Moreover, eIF4E drives the production of key components of the splicing machinery underpinning larger scale impacts on splicing. These drive eIF4E-dependent reprogramming of the splicing signature. This work completes a series of studies demonstrating eIF4E acts in all the major mRNA maturation steps whereby eIF4E drives production of the RNA processing machinery and escorts some transcripts through various maturation steps. In this way, eIF4E couples the mRNA processing-export-translation axis linking nuclear mRNA processing to cytoplasmic translation. eIF4E elevation is linked to worse outcomes in acute myeloid leukemia patients where these activities are dysregulated. Understanding these effects provides new insight into post-transcriptional control and eIF4E-driven cancers.


Subject(s)
Eukaryotic Initiation Factor-4E , Leukemia, Myeloid, Acute , Humans , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Gene Expression Regulation , RNA Splicing/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism
18.
J Invest Dermatol ; 144(3): 500-508.e3, 2024 Mar.
Article in English | MEDLINE | ID: mdl-37865179

ABSTRACT

Eukaryotic initiation factor 4E (eIF4E) has been known to play a critical role in the regulation of gene expression and essential cellular processes, such as proliferation, apoptosis and differentiation. In this study, we explored its role in the pathophysiology of psoriasis. The inhibition of eIF4E by small interfering RNA or briciclib, an eIF4E small molecule inhibitor, downregulated the expression of eIF4E itself and its two complex partners eIF4A and G, as well as other eIFs (eg, eIF1A, eIF2α, eIF3A, eIF3B, eIF5, and eIF6). This inhibition also abolished psoriatic inflammation in both the imiquimod and TGFß mouse model, as well as in a human 3 dimensional-psoriasis tissue model. Downregulation of eIF4E and the other eIFs by application of briciclib (particularly when given topically) was linked to the normalization of cellular proliferation, epidermal hyperplasia, levels of proinflammatory cytokines (eg, TNFα, IL-1b, IL-17, and IL-22), and keratinocyte differentiation markers (eg, KRT16 and FLG). These results demonstrate translational imbalance and underline the crucial role played by eIF4E and other eIFs in the pathophysiology of psoriasis. This work opens up avenues for the development of novel topical antipsoriatic treatment strategies by targeting eIF4E.


Subject(s)
Eukaryotic Initiation Factor-4E , Psoriasis , Animals , Mice , Humans , Eukaryotic Initiation Factor-4E/genetics , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Protein Processing, Post-Translational , Psoriasis/drug therapy
19.
Int J Biol Macromol ; 254(Pt 3): 128062, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37967597

ABSTRACT

Some viral proteins are translated cap-independently via the internal ribosome entry site (IRES), which maintains conservative characteristic among different isolates of the same virus species. However, IRES activity showed a 7-fold variance in RNA2 of wheat yellow mosaic virus (WYMV) HC and LYJN isolates in this study. Based on RNA structure probing and mutagenesis assay, the loosened middle stem of H1 and the hepta-nucleotide top loop of H2 in the LYJN isolate synergistically ensured higher IRES activity than that in the HC isolate. In addition, the conserved top loop of H1 ensured basic IRES activity in HC and LYJN isolates. WYMV RNA2 5'-UTR specifically interacted with the wheat eIF4E, accomplished by the top loop of H1 in the HC isolate or the top loop of H1 and H2 in the LYJN isolate. The high IRES activity of the WYMV RNA2 LYJN isolate was regulated by two eIF4E-binding sites, which showed a synergistic effect mediated by the proximity of the H1 and H2 top loops owing to the flexibility of the middle stem in H1. This report presents a novel evolution pattern of IRES, which altered the number of eIF4E-binding sites to regulate IRES activity.


Subject(s)
Mosaic Viruses , Protein Biosynthesis , Eukaryotic Initiation Factor-4E/genetics , Eukaryotic Initiation Factor-4E/metabolism , Internal Ribosome Entry Sites/genetics , Triticum/genetics , Triticum/metabolism , Binding Sites , Mosaic Viruses/genetics , Mosaic Viruses/metabolism , RNA, Viral/genetics
20.
J Cell Mol Med ; 28(2): e18067, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38071502

ABSTRACT

We intend to evaluate the importance of N7 -methylguanosine (m7G) for the prognosis of breast cancer (BC). We gained 29 m7G-related genes from the published literature and among them, 16 m7G-related genes were found to have differential expression. Five differentially expressed genes (CYFIP1, EIF4E, EIF4E3, NCBP1 and WDR4) were linked to overall survival. This suggests that m7G-related genes might be prognostic or therapeutic targets for BC patients. We put the five genes to LASSO regression analysis to create a four-gene signature, including EIF4E, EIF4E3, WDR4 and NCBP1, that divides samples into two risky groups. Survival was drastically worsened in a high-risk group (p < 0.001). The signature's predictive capacity was demonstrated using ROC (10-year AUC 0.689; 10-year AUC 0.615; 3-year AUC 0.602). We found that immune status was significantly different between the two risk groups. In particular, NCBP1 also has a poor prognosis, with higher diagnostic value in ROC. NCBP1 also has different immune states according to its high or low expression. Meanwhile, knockdown of NCBP1 suppresses BC malignancy in vitro. Therefore, m7G RNA regulators are crucial participants in BC and four-gene mRNA levels are important predictors of prognosis. NCBP1 plays a critical target of m7G mechanism in BC.


Subject(s)
Breast Neoplasms , Guanosine , Female , Humans , Biomarkers , Breast Neoplasms/genetics , Eukaryotic Initiation Factor-4E , GTP-Binding Proteins , Guanosine/analogs & derivatives , Nuclear Cap-Binding Protein Complex/metabolism , Prognosis
SELECTION OF CITATIONS
SEARCH DETAIL
...